Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

3-(4-Chloroanilino)isobenzofuran-1(3H)-one

Orhan Büyükgüngör^a and Mustafa Odabaşoğlu^b*

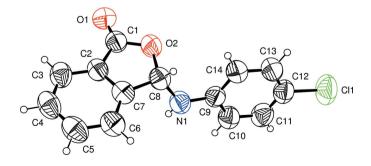
^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ^bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study $T=296~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.005~\mathrm{\mathring{A}}$ R factor = 0.055 wR factor = 0.139 Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


The structure of the title compound, $C_{14}H_{10}CINO_2$, is stabilized by $N-H\cdots O$, $C-H\cdots \pi$ and $\pi-\pi$ interactions. The phthalide part of the molecule is planar and the dihedral angle between the phthalide group and the benzene ring is 75.58 (15)°.

Received 10 April 2006 Accepted 20 April 2006 3-Substituted phthalides. Part IV

Comment

Phthalides are known to show diverse biological activities as hormones, pheromones and antibiotics (Aoki *et al.*, 1973; Kubota & Tatsuno, 1971; Tsi & Tan, 1997). As part of our ongoing research on 3-substituted phthalides, the title compound, (I), has been synthesized and its crystal structure is reported here.

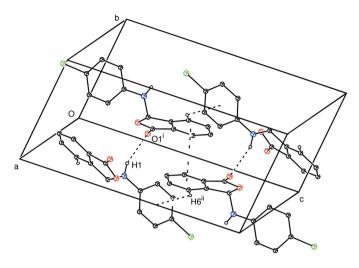

The molecule of (I) is built up from a phthalide unit connected to a chlorophenyl ring through an amino group (Fig. 1). The phthalide part (atoms C1–C8) is essentially planar, the largest deviation from the mean plane being 0.014 (3) Å for atom C1. The dihedral angle between the p-chlorophenyl ring and the mean plane of the phthalide group is 5.58 (15)°.

Figure 1 A view of (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

© 2006 International Union of Crystallography All rights reserved

organic papers

Figure 2 A packing diagram for (I), showing the N-H···O, C-H··· π and π - π interactions represented as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry codes: (i) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.]

The occurrence of N-H \cdots O hydrogen bonds results in the formation of C(6) chains (Etter, 1990) developing parallel to the a axis (Table 1, Fig. 2). These C(6) chains are linked to each other by C-H $\cdots\pi$ and $\pi-\pi$ interactions, resulting in the formation of a sheet parallel to the bc plane (Table 1, Fig. 2). The $\pi-\pi$ interaction occurs between the C2–C7 six-membered ring and its symmetry-related counterpart at (-x, -y + 1, -z), with a centroid-to-centroid distance of 3.618 Å and a plane-to-plane separation of 3.596 Å.

Experimental

The title compound was prepared according to the method described by Odabaşoğlu & Büyükgüngör (2006), using phthalaldehydic acid and 4-chloroaniline as starting materials (yield 90%; m.p. 454–455 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol (95%) solution at room temperature.

Crystal data

$C_{14}H_{10}CINO_2$	Z = 4
$M_r = 259.68$	$D_x = 1.395 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 12.9256 (14) Å	$\mu = 0.30 \text{ mm}^{-1}$
b = 7.2383 (10) Å	T = 296 K
c = 15.6115 (16) Å	Prismatic plate, pale yello
$\beta = 122.196 \ (7)^{\circ}$	$0.60 \times 0.42 \times 0.16 \text{ mm}$
$V = 1236.0 (3) \text{ Å}^3$	

Data collection

Stoe IPDS 2 diffractometer	16688 measured reflections
φ scans	2422 independent reflections
Absorption correction: integration	1385 reflections with $I > 2\sigma(I)$
(X-RED32; Stoe & Cie, 2002)	$R_{\rm int} = 0.090$
$T_{\text{min}} = 0.848$, $T_{\text{max}} = 0.955$	$\theta_{\text{max}} = 26.0^{\circ}$

Refinement

refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0645P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.055$	+ 0.036P
$wR(F^2) = 0.139$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
2422 reflections	$\Delta \rho_{\text{max}} = 0.15 \text{ e Å}^{-3}$
167 parameters	$\Delta \rho_{\min} = -0.22 \text{ e Å}^{-3}$
H atoms treated by a mixture of	
independent and constrained	

Table 1 Selected geometric parameters (\mathring{A} , $^{\circ}$).

C1-O1	1.213 (3)	C8-N1	1.404 (4)
C1-O2	1.347 (3)	C8-O2	1.505 (3)
C2-C7 C7-C8	1.375 (4) 1.492 (4)	C9-N1	1.400 (4)
	· /	N1 00 07	1142 (2)
O1-C1-O2 O1-C1-C2	121.5 (3) 130.0 (3)	N1-C8-C7 N1-C8-O2	114.2 (2) 111.6 (2)

 Table 2

 Hydrogen-bond geometry (\mathring{A} , $^{\circ}$).

Cg1 is the centroid of ring C9-C14.

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} \hline N1 - H1 \cdots O1^{i} \\ C6 - H6 \cdots Cg1^{ii} \end{array} $	0.82 (2)	2.29 (3)	3.046 (4)	155 (2)
	0.93	3.29	3.987 (4)	134

Symmetry codes: (i) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

All H atoms attached to C atoms were treated as riding on their parent atoms, with C–H = 0.93 Å for aromatic H and 0.98 Å for methine H, and with $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$. The H atom of the amino group was located in a Fourier difference map and freely refined.

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA*; data reduction: *X-RED32* (Stoe & Cie, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F.279 of the University Research Fund).

References

```
Aoki, K., Furusho, T., Kimura, T., Satake, K. & Funayama, S. (1973). Jpn. Patent 7 324 724; Chem. Abstr. (1974), 80, 129246. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. Kubota, Y. & Tatsuno, T. (1971). Chem. Pharm. Bull. 19, 1226–1233. Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1879–o1881. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
```

Tsi, D. & Tan, B. K. H. (1997). Phytother. Res. 11, 576-582.